
Inductive representations of RDF Graphs

Jose Emilio Labra Gayoa,∗, Johan Jeuringb,c, Jose María Álvarez Rodríguezd

aUniversity of Oviedo, C/Calvo Sotelo, S/N, 33007, Oviedo, Spain
bUtrecht University, The Netherlands

cOpen University the Netherlands, The Netherlands
dSouth East European Research Center, (SEERC), 24 Proxenou Koromila Street, Thessaloniki, 54622,

Greece

Abstract

RDF forms the basis of the semantic web technology stack. It is based on a directed
graph model where nodes and edges are identified by URIs. Occasionally, such graphs
contain literals or blank nodes. Blank nodes complicate the graph representation given
their existential nature.

In this paper we propose a purely functional representation of RDF graphs using
a special form of inductive graphs called inductive triple graphs. We employ logical
variables to represent blank nodes. This approach can be implemented in any functional
programming language such as Haskell and Scala.

Keywords: Functional Programming, RDF, Graph, Haskell, Scala, Inductive graphs

1. Introduction

RDF appears at the basis of the semantic web technologies layer cake as the lingua
franca for knowledge representation and exchange. RDF is based on a simple graph
model where nodes are predominantly resources, identified by URIs, and edges are
properties identified by URIs. Although this apparently simple model has some intri-
cacies, such as the use of blank nodes, RDF has been employed in numerous domains
and has been part of the successful linked open data movement.

The main strengths of RDF are the use of global URIs to represent nodes and prop-
erties and the composable nature of RDF graphs, which makes it possible to automati-
cally integrate RDF datasets generated by different agents.

Most of the current RDF libraries are based on an imperative model, where a graph
is represented as an adjacency list with pointers or an incidence matrix. An algorithm
traversing a graph usually maintains a state in which visited nodes are collected.

On the other hand, purely functional programming offers several advantages over
imperative programming [13]. It is easier to reuse and compose functional programs, to

∗Corresponding Author
Email addresses: labra@uniovi.es (Jose Emilio Labra Gayo), j.t.jeuring@uu.nl (Johan

Jeuring), jmalvarez@seerc.org (Jose María Álvarez Rodríguez)

Preprint submitted to Elsevier November 3, 2013

test properties of a program or prove that a program is correct, to transform a program,
or to construct a program that can be executed on multi-core architectures.

In this paper, we present a purely functional representation of RDF Graphs and we
introduce popular combinators such as fold and map for RDF graphs. Our approach is
based on Martin Erwig’s inductive functional graphs [10], which we have adapted to
the intricacies of the RDF model.

The main contributions of this paper are:

• a simplified representation of inductive graphs

• a purely functional representation of RDF graphs

We expect that our approach will show its benefits in contexts where a formal treat-
ment of RDF graphs is important, like RDF validation and manipulation, and to other
contexts like concurrency settings where immutable data structures show its benefits.

This paper is structured as follows: Section 2 describes purely functional approaches
to graphs. In particular, we present inductive graphs as introduced by Martin Erwig and
we propose a new approach that we call triple graphs which are better suited to imple-
ment RDF graphs. Section 3 presents the RDF model. Section 4 describes how we
can represent the RDF model in a functional programming setting. Section 5 describes
two implementations of our approach: one in Haskell and another in Scala. Finally,
Section 6 describes related work and Section 7 presents some conclusions and future
work.

2. Inductive Graphs

2.1. General inductive graphs

In this section we review common graph concepts and the inductive definition of
graphs introduced by Martin Erwig [10].

A directed graph can be defined as a pair G = (V, E) where V is a set of vertices
and E ⊆ V × V is a set of edges. A labeled directed graph is a directed graph in which
vertices and edges are labeled. A vertex is a pair (v, l), where v is a node index and l is
a label; an edge is a triple (v1, v2, l) where v1 and v2 are the source and target vertices
and l is the label.

Example 2.1. Figure 1 depicts the labeled directed graph with V = {(1, a), (2, b), (3, c)},
and E = {(1, 2, p), (2, 1, q), (2, 3, r), (3, 1, s)}.

In software, a graph is often represented using imperative data structures describing
how nodes are linked by means of edges. Such a data structure may be an adjacency
list with pointers, or an incidence matrix. When a graph changes, the corresponding
data structure is destructively updated. A graph algorithm that visits nodes one after
the other uses an additional data structure to register what part of the graph has been
visited, or adapts the graph representation to include additional fields to mark nodes
and edges in the graph itself.

2

a
1

b
2

c
3

p

q

rs

Figure 1: Simple labeled directed graph

Implementing graph algorithms in a functional programming language is challeng-
ing as one has to either pass an additional parameter representing the graph to all func-
tions, or use monads to emulate the imperative style. This style complicates correctness
proofs and program transformations.

Martin Erwig [9] introduced a functional representation of graphs, where a graph is
defined by induction. He describes two implementations for persistent graphs [8], and
a Haskell [10] implementation, which we summarize in this section.

A graph is defined inductively as an empty graph, or an extension of a graph with
a node v together with its label and a list of successors and predecessors of v in the
graph.

The type of the values used in an extension of a graph is given by the type Context
.

1 -- Context of a node in the graph
2 type Context a b =
3 (Adj b, Node, a, Adj b)
4

5 -- Adjacent labelled nodes
6 type Adj b = [(Node,b)]
7

8 -- Labelled nodes
9 type LNode a = (a,Node)

10

11 -- Index of nodes
12 type Node = Int
13

14 -- Labelled edges
15 type LEdge b = (Node,Node,b)

A context of a node is a value (pred,node,label,succ) where pred is the list
of predecessors, node is the index of the node, label is the label of the node and
succ is the list of successors. Labelled nodes are represented by a pair consisting of
a label and a node, and labelled edges are represented by a source and a target node,
together with a label.

3

Figure 2: Inductive graph representation using M. Erwig approach

1 class Graph gr where
2 empty :: gr a b
3

4 isEmpty :: gr a b -> Bool
5

6 match :: Node -> gr a b -> (Context a b, gr a b)
7

8 mkGraph :: [LNode a] -> [LEdge b] -> gr a b
9

10 labNodes :: gr a b -> [LNode a]

Example 2.2. The context of node b in Figure 1 is:

1 ([(1,’p’)],2,’b’,[(1,’q’),(3,’r’)])

Although the graph type is implemented as an abstract type for efficiency reasons,
it is convenient to think of the graph as an algebraic type with two constructors Empty
and :&.

1 data Graph a b = Empty
2 | Context a b :& Graph a b

Example 2.3. The graph from Figure 1 can be encoded as:

1 ([(2,’q’),(3,’s’)],1,’a’,[(2,’p’)]) :&
2 ([],2,’b’,[(3,’r’)]) :&
3 ([],3,’c’,[]) :&
4 Empty

Notice that the same graph can be encoded in different ways. Another encoding is:

1 ([(2,’r’)],3,’c’,[(1,’s’)]) :&
2 ([(1,’p’)],2,’b’,[(1,’q’)]) :&
3 ([],1,’a’,[]) :&
4 Empty

The inductive graph approach has been implemented in Haskell in the so-called
FGL library1. FGL defines a type class Graph representing interface of graphs, to-
gether with some common graph operations, see Figure 2. Based on these basic oper-
ations we can define operations like fold, map, etc.

1http://web.engr.oregonstate.edu/~erwig/fgl/haskell

4

http://web.engr.oregonstate.edu/~erwig/fgl/haskell

Example 2.4. The graph from example 2.3 is rerpesented in FGL as:

1 e :: Gr Char Char
2 e = mkGraph
3 [(’a’,1),(’b’,2),(’c’,3)]
4 [(1,2,’p’)
5 ,(2,1,’q’)
6 ,(2,3,’r’)
7 ,(3,1,’s’)]

A problem with this interface is that it exposes the management of node/edge in-
dexes to the user of the library. For example, it is possible to construct graphs with
edges between non-existing nodes.

Example 2.5. The following code compiles but produces a runtime error because there
is no node with index 42:

1 gErr :: Gr Char Char
2 gErr = mkGraph
3 [(’a’,1)]
4 [(1,42,’p’)]

2.2. Inductive triple graphs
In this section, we introduce a simplified representation of inductive graphs based

on the following assumptions: We propose a simplified representation of inductive
graphs based on three assumptions:

• each node and each edge have a label

• labels are unique

• the label of an edge can also be the label of a node

a b
:p

r
:q

Figure 3: A triple graph with an edge that is also a node

These two assumptions are motivated by the nature of RDF Graphs, which we will
explain in the next section.

Our approach is general enough so it is possible to convert the previous representa-
tion to this one and vice versa.

5

An advantage of this representation is that a user does not have to be aware of node
indexes.

Furthermore, there is no need for two different types for nodes and edges in this
representation, simplifying the development of a graph algebra.

A graph of elements of type a is generated by a set of triples where each triple has
the type (a,a,a). We will call this type of graphs TGraph (triple based graphs). We
can consider triple graphs to be defined by the following datatype.

Notice that in practice, the internal implementation could differ:

1 data TGraph a = Empty
2 | TContext a :& Graph a

where TContext a is defined as:

1 type TContext a =
2 (a, [(a,a)], [(a,a)], [(a,a)])

A TContext of a node is a value (node,pred,succ,rels) where node is the
node itself, pred is the list of predecessors, succ is the list of successors, and rels
is the list of pairs of nodes related by this node in its role as edge.

Example 2.6. The graph from Figure 1 can be defined as:

1 (’a’,[(’c’,’s’),(’b’,’q’)],[(’p’,’b’)],[]) :&
2 (’b’,[],[(’r’,’c’)],[]) :&
3 (’c’,[],[],[]) :&
4 (’p’,[],[],[]) :&
5 (’q’,[],[],[]) :&
6 (’r’,[],[],[]) :&
7 (’s’,[],[],[]) :&
8 Empty

With this representation it is easy to model graphs in which nodes are used as edges.

Example 2.7. The graph from Figure 3 can be defined by:

1 (’a’,[],[(’p’,’b’)],[]) :&
2 (’b’,[],[],[]) :&
3 (’p’,[],[(’q’,’r’)],[]) :&
4 (’q’,[],[],[]) :&
5 (’r’,[],[],[]) :&
6 Empty

As in Erwig’s approach, it is possible to have different representations for the same
graph.

Example 2.8. The previous graph could also be defined as follows when we reverse
the nodes:

6

1 (’r’,[],[(’p’,’q’)],[]) :&
2 (’q’,[],[],[]) :&
3 (’p’,[],[],[(’a’,’b’)]) :&
4 (’b’,[],[],[]) :&
5 (’a’,[],[],[]) :&
6 Empty

In Haskell TGraph is implemented as a type class with at least the following meth-
ods:

1 class TGraph gr where
2 -- empty graph
3 empty :: gr a
4

5 -- decompose a graph
6 match :: a -> gr a -> (TContext a, gr a)
7

8 -- make graph from triples
9 mkGraph :: [(a,a,a)] -> gr a

10

11 -- nodes of a graph
12 nodes :: gr a -> [a]
13

14 -- extend a graph
15 extend :: TContext a -> gr a -> gr a

Figure 4: TGraph representation

Note that with this simplified interface, it is impossible to construct graphs with
edges between non-existing nodes.

2.3. Algebra of graphs

It is possible to define some common general operations over graphs. One of the
most versatile combinators is foldGraph:

1 foldTGraph :: TGraph gr =>
2 b -> (TContext a -> b -> b) -> gr a -> b
3 foldTGraph e f g = case nodes g of
4 [] -> e
5 (n:_) -> let (ctx,g’) = match n g
6 in f ctx (foldTGraph e f g’)

It is possible to demonstrate some common laws like the fusion law which declares
that given:

7

1 h e = e’
2 f a b = f’ a (h b)

Then:

1 h . foldTGraph f e = foldTGraph f’ e’

fold is the basic recursive operator on datatypes: any recursive function on a
datatype can be expressed as a fold. For example, we can define some common
functions in terms of foldTGraph like lengthTGraph to calculate the number
of nodes in a TGraph and sumTGraph which adds the elements of a TGraph

1 lengthTGraph :: TGraph gr => gr a -> Int
2 lengthTGraph = foldTGraph 0 (\x y -> 1 + y)
3

4 sumTGraph :: TGraph gr => gr Int -> Int
5 sumTGraph = foldTGraph 0(\c r -> node c + r)

It is also possible to declare mapTGraph in terms of foldTGraph.

1 mapTGraph :: TGraph gr =>
2 (TContext a -> TContext b) -> gr a -> gr b
3 mapTGraph f =
4 foldTGraph empty
5 (\ctx g ->
6 extend (mapCtx f ctx) g)
7 where
8 mapCtx f (n,pred,succ,rels) =
9 (f n,

10 mapPairs f pred,
11 mapPairs f succ,
12 mapPairs f rels)
13 mapPairs f = map
14 (\(x,y) -> (f x, f y))

fold and map are very popular combinators which capture the most popular opera-
tions on datatypes [18].

An interesting property of mapTGraph is that it maintains the graph structure
whenever the function f is injective. If f is not injective, the graph structure can be
completely modified.

Example 2.9. Applying the function mapTGraph (_ -> 0) returns a graph with
a single node.

We can use mapTGraph to define some common operations, such as an operation
that reverses the order of the edges, over graphs.

Example 2.10. The following function reverses the edges in a graph.

8

1 rev :: (TGraph gr) => gr a -> gr a
2 rev = mapTGraph swapCtx
3 where
4 swapCtx (n,pred,succ,rels) =
5 (n,succ,pred,map swap rels)

We have implemented other functions over graphs, such as depth-first search, topo-
logical sorting, strongly connected components, etc, the implementations are available
at https://github.com/labra/haws.

3. The RDF Model

The RDF Model was accepted as a recommendation in 2004 [1]. The 2004 rec-
ommendation is being updated to RDF 1.1, and the current version [5] is the one we
use for the main graph model in this paper. Resources are globally denoted IRIs (in-
ternationalized resource identifiers [7])2. Notice that the IRIs in the RDF Model are
global identifiers for nodes (subjects or objects of triples) and for edges (predicates).
Therefore, an IRI can be both a node and an edge. Qualified names are employed to
shorten IRIs. For example, if we replace http://example.org by the prefix ex
:, ex:a refers http://example.org/a. Throughout the paper we will employ
Turtle notation [6]. Turtle supports defining triples by declaring prefix aliases for IRIs
and introducing some simplifications.

Example 3.1. The following Turtle code represents the graph in Figure 1.

1 @prefix : <http://example.org/>
2

3 :a :p :b .
4 :b :q :a .
5 :b :r :c .
6 :c :s :a .

An RDF triple is a three-tuple 〈s, p, o〉 ∈ (I∪B)× I× (I∪B∪L), where I is a set
of IRIs, B a set of blank nodes, and L a set of literals. The components s, p, o are
called, the subject, the predicate, and the object of the triple, respectively. An RDF
graph G is a set of RDF triples.

Example 3.2. The following Turtle code represents the graph in Figure 3.

1 :a :p :b .
2 :p :q :r .

2Although the 2004 RDF recommendation employs URIs, the current working draft uses IRIs

9

https://github.com/labra/haws

Blank nodes in RDF are used to describe elements whose IRI is not known or does
not exist. The Turtle syntax for blank nodes is _:id where id represents a local
identifier for the blank node.

Example 3.3. The following set of triples can be depicted by the graph in Figure 5.

1 :a :p _:b1 .
2 :a :p _:b2 .
3 _:b1 :q :b .
4 _:b2 :r :b .

:a _:b1

_:b2 :b

:p

:p

:r

:q

Figure 5: Example with two blank nodes

Blank node identifiers are local to an RDF document and can be described by means
of existential variables [17]. Intuitively, a triple 〈b1, p, o〉 where b1 ∈ B can be read as
∃b1〈b1, p, o〉. This predicate holds if there exists a resource s such that 〈s, p, o〉 holds.

When interpreting an RDF document with blank nodes, arbitrary resources can be
used to replace the blank nodes, replacing the same blank node by the same resource.

Example 3.4. Example 3.3 can be represented by:

∃b1, b2


〈:a, :p, b1〉
〈:a, :p, b2〉
〈b1, :q, :b〉
〈b2, :r, :b〉


Currently, the RDF model only allows blank nodes to appear as subjects or objects,

and not as predicates. This restriction may be removed in future versions of RDF so we
do not impose it in our graph representation model. Literals are used to denote values
such as strings, numbers, dates, etc. There are two types of literals: datatype literals
and language literals. A datatype literal is a pair (val, t) where val ∈ L is a lexical
form representing its value and t ∈ T is a datatype URI. In Turtle, datatype literals are
represented as val^^t. A language literal is a pair (s, lang) where s ∈ L is a string
value and lang is a string that identifies the language of the literal. The values of lang
should follow BCP47 [21]. In Turtle, language literals are represented as s@lang.

10

Example 3.5. The following set of triples contains two literals with two different lan-
guages and a datatype literal.

1 :a rdfs:label "Hello"@en .
2 :a rdfs:label "Hola"@es .
3 :a :p "1"^^<xsd:integer> .

:a

"Hello"@en

"Hola"es

"1"^^<xsd:integer>

rdfs:label

rdfs:label

:p

Figure 6: Example with literals

In the RDF data model, literals are constants. Two literals are equal if their lexical
form, datatype and language are equal. The different lexical forms of literals can be
considered unique values. Although the current RDF graph model restricts literals to
appear only as objects, we do not impose that restriction in our model. For simplicity,
we only use lexical forms of literals in the rest of the paper.

4. Functional representation of RDF Graphs

The RDF model is a labeled directed graph where the nodes are resources. A
resource can be modeled as an algebraic datatype:

1 data Resource = IRI String
2 | Literal String
3 | BNode BNodeId
4

5 type BNodeId = Int

The RDF graph model has three special aspects that we need to take into account:

• edges can also be nodes at the same time (subjects or objects)

• nodes are uniquely identified. There are three types of nodes: resource nodes,
blank nodes and literals

11

• the identifier of a blank node is local to the graph, and has no meaning outside
the scope of the graph. Consequently, a blank node has an existential nature [17]

To address the first two aspects we employ the triple inductive graphs introduced
in Section 2.2, which support defining graphs in which edges can also appear as nodes,
and both nodes and edges are uniquely identified. The existential nature of blank nodes
can be modeled by logical variables [23].

The type of RDF graphs is defined as:

1 data RDFGraph = Ground (Graph Resource)
2 | Exists (BNodeId -> RDFGraph)

Example 4.1. The graph from Figure 5 is defined as:

1 Exists (\b1 ->
2 Exists (\b2 ->
3 Ground (
4 (’a’,[],[(’p’,b1),(’p’,b2)],[]) :&
5 (’b’,[(b1,’q’),(b2,’r’)],[],[]) :&
6 (b1, [], [], []) :&
7 (b2, [], [], []) :&
8 (p, [], [], []) :&
9 (q, [], [], []) :&

10 (r, [], [], []) :&
11 Empty)))

One of the benefits of the RDFGraph encoding is that it makes it easy to construct
some common functions on RDF graphs.

For example, merging two RDF graphs can easily be accomplished by means of
function composition and folds over triple graphs.

1 mergeRDF :: RDFGraph -> RDFGraph -> RDFGraph
2 mergeRDF g (Exists f) = Exists (\x -> mergeRDF g (f x))
3 mergeRDF g (Ground g’) = foldTGraph g compRDF g’
4 where
5 compRDF ctx (Exists f) =
6 Exists (\x -> compRDF ctx (f x))
7 compRDF ctx (Ground g) =
8 Ground (comp ctx g)

Given their functional representation, blank nodes are automatically handled by
the functional language implementation. So the programmer does not have to take care
about renaming blank nodes and the system ensures its correct behaviour.

It is possible to define maps over RDFGraphs as:

1 mapRDFGraph::(Resource -> Resource) ->
2 RDFGraph -> RDFGraph

12

3 mapRDFGraph h (Basic g) =
4 Basic (mapTGraph (mapCtx h) g)
5 mapRDFGraph h (Exists f) =
6 Exists (\x -> mapRDFGraph h (f x))

Finally, in order to define foldRDFGraph, it is necessary to have a seed generator
that assigns different values to each blank node. In the following definition, we inject
integer numbers starting from 0.

1 foldRDFGraph ::
2 a -> (Context Resource -> a -> a) -> RDFGraph -> a
3 foldRDFGraph e h =
4 foldRDFGraph’ e h 0
5 where
6 foldRDFGraph’ e h seed (Ground g) =
7 foldTGraph e h g
8 foldRDFGraph’ e h seed (Exists f) =
9 foldRDFGraph’ e h (seed + 1) (f seed)

Notice that the use of integer seeds to generate unique identifiers for existential vari-
ables could be encapsulated in a monad which would lead to monadic fusion laws [19].

5. Implementation

We have developed two implementations in Haskell: one using higher-order func-
tions and other based on the FGL library3.

We have also developed a Scala implementation4 using the Graph for Scala library.
This implementation is described in more detail in [16]. The Scala implementation
contains a full RDF 1.1 parser which passes all the W3c tests so our approach can
handle every RDF construct.

Our first implementation uses a functional representation of graphs. A graph is
defined by a set of nodes and a function from nodes to contexts.

1 data FunTGraph a =
2 FunTGraph (a -> Maybe (Context a, FunTGraph a))
3 (Set a)

This implementation was inspired by the functional graph representation that appears
in [22]. It offers some theoretical insight, but is not intended to be used for practical
proposes.

The second implementation in Haskell is based on the FGL library. Here, a TGraph
a is represented by a Graph a and a map from nodes to the edges that they relate.

3The Haskell implementations are available at https://github.com/labra/haws
4The Scala implementation is available at https://github.com/labra/wesin

13

https://github.com/labra/haws
https://github.com/labra/wesin

1 data FGLTGraph a = FGLTGraph {
2 graph :: Graph a a,
3 nodeMap :: Map a (ValueGraph a)
4 }
5

6 data ValueGraph a = Value {
7 grNode :: Node,
8 edges :: Set (a,a)
9 }

The nodeMap keeps track of the index of each node in the graph and the set of
(subject,object) nodes that the node relates if it acts as a predicate.

In this way, it can be seen that any inductive triple graph can be converted to an
inductive graph using Martin Erwig’s approach.

6. Related Work

There area quite a few RDF libraries using imperative languages, such as Jena5,
Sesame6 (Java), dotNetRDF7 (C#), Redland8 (C), RDFLib9 (Python), RDF.rb10 (Ruby),
etc.

For dynamic languages, most of the RDF libraries are binders to some underlying
imperative implementation. For example, banana-RDF11 is an RDF library implemen-
tation in Scala. Although the library emphasizes type safety and immutability, the
underlying implementations are Jena and Sesame.

There are some functional implementations of RDF libraries. Most of these employ
mutable data structures. For example, scaRDF12 started as a facade of Jena and evolved
to implement the whole RDF graph machinery in Scala, employing mutable adjacency
maps.

There have been several attempts to define RDF libraries in Haskell. Swish13 pro-
vides an RDF toolkit with support for RDF inference using a Horn-style rule system.
It implements some common tasks like graph merging, isomorphism and partitioning
representing an RDf graph as a set of arcs. RDF4h14 is another complete RDF library
which defines a type class RDF and an implementation using adjacency maps. We
consider that our approach could be added as another implementation.

5http://jena.apache.org/
6http://www.openrdf.org/
7http://www.dotnetrdf.org/
8http://librdf.org/
9http://www.rdflib.net/

10http://rdf.rubyforge.org/
11https://github.com/w3c/banana-rdf
12https://code.google.com/p/scardf/
13https://bitbucket.org/doug_burke/swish
14http://protempore.net/rdf4h/

14

http://jena.apache.org/
http://www.openrdf.org/
http://www.dotnetrdf.org/
http://librdf.org/
http://www.rdflib.net/
http://rdf.rubyforge.org/
https://github.com/w3c/banana-rdf
https://code.google.com/p/scardf/
https://bitbucket.org/doug_burke/swish
http://protempore.net/rdf4h/

Martin Erwig introduced the definition of inductive graphs [9]. He gives two pos-
sible implementations [8], one using version trees of functional arrays, and the other
using balanced binary search trees. Both are implemented in SML. Later, Erwig im-
plemented the second approach in Haskell which has become the FGL library.

Jeffrey and Patel-Schneider employ Agda15 to check integrity constraints of RDF [14],
and propose a programming language for the semantic web [15].

Mallea et al [17] describe the existential nature of blank nodes in RDF. Our use of
existential variables was inspired by Seres and Spivey [23] and Claessen [3]. The rep-
resentation is known in logic programming as ‘the completion process of predicates’,
first described and used by Clark in 1978 [4] to deal with the semantics of negation in
definite programs.

Our representation of existential variables in RDFGraphs uses a datatype with an
embedded function. Fegaras and Sheard [11] describe different approaches to imple-
ment folds (also known as catamorphisms) over this kind of datatypes, and show as an
example how to represent graphs using a recursive datatype with embedded functions.

The representation of RDF graphs using hypergraphs, and transformations between
hypergraphs and bipartite graphs, have been studied by Hayes and Gutiérrez [12].

Recently, Oliveira et al. [20] define structured graphs in which sharing and cy-
cles are represented using recursive binders, and an encoding inspired by parametric
higher-order abstract syntax [2]. They apply their work to grammar analysis and trans-
formation. It is future work to check if their approach can also be applied to represent
RDF graphs.

7. Conclusions

This paper introduces a purely functional representation of RDF graphs. Our ap-
proach is based on a variation of inductive graphs, which we dub inductive triple
graphs. The main advantage of this approach is that it enables the development of
an algebra of RDF graphs with common operations like mapping, folding, or merging.

We have implemented our representation of RDF graphs using the functional pro-
gramming languages Haskell and Scala.

One of the benefits of an immutable data structure such as our representation for
graphs is its potential for concurrent programming. In the future we want to release
a complete RDF library, and check its suitability and scalability in some real-world
scenarios.

8. Acknowledgments

This work has been partially funded by the Spanish project MICINN-12-TIN2011-
27871 ROCAS (Reasoning about the Cloud by Applying Semantics) and by the Inter-
national Excellence Campus grant of the University of Oviedo which allowed the first
author to spend a research visit at Utrecht University.

15https://github.com/agda/agda-web-semantic

15

https://github.com/agda/agda-web-semantic

References

[1] J. J. Carroll and G. Klyne. Resource description framework (RDF): Concepts and
abstract syntax. W3C recommendation, W3C, Feb. 2004. http://www.w3.
org/TR/2004/REC-rdf-concepts-20040210/.

[2] A. J. Chlipala. Parametric higher-order abstract syntax for mechanized semantics.
In J. Hook and P. Thiemann, editors, Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Victoria, BC,
Canada, September 20-28, 2008, pages 143–156. ACM, 2008.

[3] K. Claessen and P. Ljunglöf. Typed logical variables in haskell. In Proceedings of
Haskell Workshop, Montreal, Canada, 2000. University of Nottingham, Technical
Report.

[4] K. L. Clark. Logic and Databases, chapter Negation as failure, pages 293–322.
Eds. Plenum Press, 1978.

[5] R. Cyganiak and D. Wood. Resource description framework (RDF): Concepts
and abstract syntax. W3C working draft, W3C, Jan. 2013. http://www.w3.
org/TR/rdf11-concepts/.

[6] E. P. Dave Becket, Tim Berners-Lee and G. Carothers. Turtle, terse rdf triple
language. World Wide Web Consortium, Working Draft, WD-Turtle, July 2012.

[7] M. Dürst and M. Suignard. Internationalized resource identifiers. Technical Re-
port 3987, IETF, 2005.

[8] M. Erwig. Fully persistent graphs - which one to choose? In 9th Int. Workshop
on Implementation of Functional Languages, number 1467 in LNCS, pages 123–
140. Springer Verlag, 1997.

[9] M. Erwig. Functional programming with graphs. SIGPLAN Not., 32(8):52–65,
Aug. 1997.

[10] M. Erwig. Inductive graphs and functional graph algorithms. J. Funct. Program.,
11(5):467–492, Sept. 2001.

[11] L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with embed-
ded functions (or, programs from outer space). In Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’96, pages 284–294, New York, NY, USA, 1996. ACM.

[12] J. Hayes and C. Gutiérrez. Bipartite graphs as intermediate model for rdf. In Third
International Semantic Web Conference (ISWC2004), volume 3298 of Lecture
Notes in Computer Science, pages 47 – 61. Springer-Verlag, 2004.

[13] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–
107, 1989.

16

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/

[14] A. S. A. Jeffrey and P. F. Patel-Schneider. Integrity constraints for linked data. In
Proc. Int. Workshop Description Logics, 2011.

[15] A. S. A. Jeffrey and P. F. Patel-Schneider. As xduce is to xml so ? is to rdf: Pro-
gramming languages for the semantic web. In Proc. Off The Beaten Track: Work-
shop on Underrepresented Problems for Programming Language Researchers,
2012.

[16] J. E. Labra-Gayo, J. Jeuring, and J. M. Álvarez Rodríguez. Inductive triple graphs:
A purely functional approach to represent RDF. In M. Croitoru, editor, 3rd In-
ternational Workshop on Graph Structures for Knowledge Representation and
Reasoning, Beijing, China, August 2013. LNAI Series, Springer-Verlag.

[17] A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On blank nodes. In L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. F. Noy, and E. Blomqvist,
editors, International Semantic Web Conference (1), volume 7031 of Lecture
Notes in Computer Science, pages 421–437. Springer, 2011.

[18] E. Meijer, M. Fokkinga, R. Paterson, and J. Hughes. Functional Programming
with Bananas, Lenses, Envelopes and Barbed Wire. FPCA 1991: Proceedings
5th ACM Conference on Functional Programming Languages and Computer Ar-
chitecture, 523:124–144, 1991.

[19] E. Meijer and J. Jeuring. Merging monads and folds for functional programming.
In J. Jeuring and E. Meijer, editors, Advanced Functional Programming, volume
925 of Lecture Notes in Computer Science, pages 228–266. Springer, 1995.

[20] B. C. Oliveira and W. R. Cook. Functional programming with structured graphs.
SIGPLAN Not., 47(9):77–88, Sept. 2012.

[21] A. Phillips and M. Davis. Tags for Identifying Languages. Technical Report 47,
Internet Engineering Task Force, September 2009.

[22] C. Reade. Elements of Functional Programming. International Computer Sci-
ence. Addison-Wesley, 1989.

[23] S. Seres and J. M. Spivey. Embedding Prolog into Haskell. In Proceedings of
HASKELL’99. Department of Computer Science, University of Utrecht, 1999.

17

	1 Introduction
	2 Inductive Graphs
	2.1 General inductive graphs
	2.2 Inductive triple graphs
	2.3 Algebra of graphs

	3 The RDF Model
	4 Functional representation of RDF Graphs
	5 Implementation
	6 Related Work
	7 Conclusions
	8 Acknowledgments

